Rhizomelic Chondrodysplasia Punctata

What is Rhizomelic Chondrodysplasia Punctata?

Rhizomelic Chondrodysplasia Punctata is a group of rare genetic syndromes that affects multiple parts of the body. It affects the skeletal system and presents with unique facial features, issues with the respiratory system, and intellectual disability. The syndrome presents with severe health conditions, mainly related to the respiratory system, which means many individuals with the syndrome do not survive past childhood.

What gene changes cause Rhizomelic Chondrodysplasia Punctata?

Changes in three genes cause the syndrome.

  • RCDP1 is caused by mutations in the PEX7 gene.
  • RCDP2 is caused by mutations in the GNPAT gene.
  • RCDP3 is caused by mutations in the AGPS gene.
  • RCDP5 is caused by mutations in the PEX5 gene.

The syndrome is inherited in an autosomal recessive pattern.

Autosomal recessive inheritance means an affected individual receives one copy of a mutated gene from each of their parents, giving them two copies of a mutated gene. Parents, who carry only one copy of the gene mutation will not generally show any symptoms but have a 25% chance of passing the copies of the gene mutations onto each of their children.

What are the main symptoms of Rhizomelic Chondrodysplasia Punctata?

Skeletal abnormalities are the main symptom of the syndrome. This includes a shortening of the bones found in the arms (upper) and the thighs. Another abnormality associated with the syndrome is known as chondrodysplasia punctata- it affects the growth of the long bones and generally can be diagnosed through x-rays. This in turn leads to the development of joint contracture, which is a permanent bending or stiffening of the joints.

Possible clinical traits/features:
Feeding difficulties in infancy, Flat occiput, Delayed closure of the anterior fontanelle, Dolichocephaly, Seizure, Autosomal recessive inheritance, High forehead, Hepatomegaly, Abnormality of the nasal bridge, Abnormality of the eye, Abnormality of neuronal migration, Large fontanelles, Triangular face, Central hypotonia

How is it diagnosed?

To find out if someone has a diagnosis of Rhizomelic Chondrodysplasia Punctata, it is important to have a consultation and evaluation with a clinical genetic specialist.  Specialists may also suggest specific genetic testing or other types of tests to help reach a diagnosis.  FDNA’s AI technology can help speed up the diagnostic process by analyzing facial features and other health information.

More syndromes

Syndromes & Disorders

Weiss-Kruszka syndrome (WSKA)

It is a multiple congenital anomaly syndrome that has been recently identified. There are just 24 potential cases currently reported worldwide. It is also known as Weiss-Kruska syndrome. The gene responsible for the disorder is the ZNF462 gene.

Read more
Syndromes & Disorders

Yunis-Varon syndrome (YVS)

It is a rare genetic disease that affects multiple systems of the body. Its main symptoms affect the skeletal and nervous systems, as well as ectodermal tissue (hair and teeth). Since 1980 just 25 cases from 19 families have been diagnosed and recorded. This syndrome is also known as: Cleidocranial Dysplasia With Micrognathia, Absent Thumbs, And Distal Aphalangia

Read more
Syndromes & Disorders

Xia-Gibbs syndrome (XIGIS)

It is a rare genetic syndrome associated mainly with intellectual disability. This syndrome is also known as: Mental Retardation, Autosomal Dominant 25; Mrd25 Changes in the AHDC1 gene are responsible for causing the syndrome. It is inherited in an autosomal dominant pattern, although all cases of the syndrome recorded so far have been the result of de novo or new mutations in the gene. In the case of autosomal dominant inheritance just one parent is the carrier of the gene mutation, and they have a 50% chance of passing it onto each of their children. Syndromes inherited in an autosomal dominant inheritance are caused by just one copy of the gene mutation. In some cases, a genetic syndrome may be the result of a de-novo mutation and the first case in a family. In this case, this is a new gene mutation which occurs during the reproductive process.

Read more